6558

Reg. No.:

Name :

Third Semester B.Tech. Degree Examination, November 2014 (2013 Scheme) 13.305 : DIGITAL SYSTEM DESIGN (FR)

Time: 3 Hours

Max. Marks: 100

PART-A

Answer for all questions. Each question carries 2 marks.

- 1. Realize a XOR gate with NAND only circuit.
- 2. Write the canonical SOP expression for the given function.

$$f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$$

- 3. Draw a neat block diagram for a Serial In Parallel Out shift register.
- 4. Give the truth table and logic diagram for T Flip Flop.
- 5. What is the role of a state diagram in simplification of a sequential circuit?
- 6. List the limitations of asynchronous counter.
- 7. Give the syntax for 'signal' declaration statement in HDL.
- 8. Give the schematic diagram for Random Access Memory (RAM).
- 9. Perform $0.101 \times 2^3 + 0.111 \times 2^5 = ?$
- 10. Draw the logic diagram of a 4 bit by 3 bit array multiplier.

(10×2=20 Marks)

PART-B

Answer any one question from each Module. Each full question carries 20 marks.

Module - I

11. a) Design a full adder circuit and draw the logic diagram using gates.

10

b) Using a four variable K map, simplify the given expression.

$$f = \sum m (1, 2, 4, 6, 10, 11, 13, 15).$$

10

- 12. a) Reduce the expression $S = \sum m(1, 2, 4, 6, 9, 11, 15) + d(3, 10, 14)$ by using a four variable K-map method.
 - b) State and prove DeMorgan's theorem.

6

14

Module - II

13. a) What is multiplexer? Derive a logic diagram for a 8:1 multiplexer.

8

b) Design a sequential circuit whose state table is given below. Draw the state diagram and realize the circuit using JK FF.

12

Present State	Next State		Output	
	X = 0	X = 1	X = 0	X = 1
001	001	010	0	0
010	001	100	0	0
100	101	100	0	13 = 5
101	001	100	0	d 1 . 1015)

OR

14. a) Reduce the given state table for minimum state, then find the output sequence generated with an input sequence of '0111001001'. Start from the state 'A'.

12

Present State	Next State		Output						
	X = 0	X = 1	X = 0	X = 1					
Α	А	E	0	0					
В	С	В	0	1					
C D E F	A C F A	F B E	0 0 0	0 1 0 0					
					G	F	G	0	4

b) What is a decoder? Derive a logic diagram for a 4 to 10 line decoder.

Module - III

15.	a)	Draw the circuit diagram for a 3 bit Johnson Counter and show how the data gets shifted in each clock.	10
	b)	Differentiate PAL and PLA with the help of a neat structural diagram. OR	10
16.	a)	Draw the logic circuit of a mod-6 synchronous up-down counter with JK FF and explain the operation with the help of a timing diagram.	10
	b)	Write a HDL code for realizing 4 : 1 Multiplexer, use behavioral model.	10
		Module – IV	
17.	a)	Explain the implementation of a Combinational Multiplication for 8×8 multiplier.	15
	b)	Give the state graph for a binary addition control network. OR	5
18.	a)	Perform the 3 bit by 2 bit signed division using shift and subtract algorithm.	10
	b)	Explain the Booth's algorithm for performing multiplication of 8×8 multiplier.	10